Facilitation of noradrenaline release from sympathetic nerves through activation of ACTH receptors, β -adrenoceptors and angiotensin II receptors

¹Mary Costa & Henryk Majewski

Department of Pharmacology, University of Melbourne, Victoria, 3052, Australia

- 1 In rabbit pulmonary artery and left atrial strips previously incubated with [3 H]-noradrenaline, the active fragment of adrenocorticotropic hormone (ACTH₁₋₂₄, 0.1 μ M) significantly enhanced the stimulation-induced (S-I) outflow of radioactivity when a cocktail containing corticosterone (40 μ M), cocaine (30 μ M) and propranolol (4 μ M) was present, but not in the absence of these drugs. In rabbit pulmonary artery a facilitatory effect of ACTH₁₋₂₄ (0.1 μ M) was also observed when only cocaine (30 μ M) was present.
- 2 ACTH₁₋₂₄ $(0.1 \,\mu\text{M})$ did not affect the S-I outflow of radioactivity from rat atria, rat pulmonary artery or guinea-pig pulmonary artery, either in the presence or in the absence of the cocktail containing corticosterone (40 μ M), cocaine (30 μ M) and propranolol (4 μ M). These results suggest that the presence of facilitatory prejunctional ACTH receptors may be restricted to rabbit sympathetic nerve endings.
- 3 Angiotensin II $(0.01 \,\mu\text{M})$, but not isoprenaline $(0.1 \,\mu\text{M})$ or ACTH₁₋₂₄ $(0.1 \,\mu\text{M})$, significantly enhanced the S-I outflow of radioactivity from rabbit pulmonary artery. In the presence of phentolamine $(1 \,\mu\text{M})$ to block inhibitory α_2 -adrenoceptors, the facilitatory effect of angiotensin II $(0.01 \,\mu\text{M})$ was significantly enhanced, and a significant facilitatory effect of isoprenaline $(0.1 \,\mu\text{M})$ and of ACTH₁₋₂₄ $(0.1 \,\mu\text{M})$ was then revealed. These results suggest that feedback inhibition of noradrenaline release, mediated through the prejunctional α_2 -adrenoceptor mechanism, buffers increases in noradrenaline release during activation of facilitatory prejunctional receptors.
- 4 In rabbit pulmonary artery, two concentrations of 8-Br-cyclic AMP, (270 or $540 \,\mu\text{M}$), enhanced the S-I outflow of radioactivity in the presence of phentolamine (1 μ M) to a similar extent. In the presence of 8-Br-cyclic AMP (270 μ M) and phentolamine, the facilitatory effects of isoprenaline (0.1 μ M) and of ACTH₁₋₂₄ (0.1 μ M) were blocked, whereas that of angiotensin II (0.01 μ M) was not changed. These results suggest that both prejunctional β -adrenoceptors and ACTH receptors enhance noradrenaline release by generating cyclic AMP. The mechanism by which angiotensin II facilitates noradrenaline release is probably independent of the cyclic AMP second messenger pathway.

Introduction

Noradrenaline release from sympathetic nerve endings can be modulated through a variety of prejunctional receptor-mediated processes (see Starke, 1977; 1981; Westfall, 1977; Rand et al., 1980; 1987; Langer, 1981). Prejunctional α -adrenoceptors are activated by neuronally-released noradrenaline to inhibit subsequent noradrenaline release during a train of nerve impulses (autoinhibition), and this is likely to be the principal receptor-mediated modulatory influence on transmitter release (see Starke,

1987). However, there are in addition to this mechanism several other inhibitory receptor-mediated processes which can be activated by agents such as prostaglandins, acetylcholine, adenosine, 5-hydroxytryptamine and various peptides (see above reviews).

In contrast to the many inhibitory mechanisms, very few prejunctional receptor mechanisms which can enhance noradrenaline release have been identified. One such facilitatory mechanism is that mediated through prejunctional β -adrenoceptors, which has now been demonstrated in a wide variety of

¹ Author for correspondence.

tissues and species both in vitro (see Majewski, 1983) and in vivo (Schmidt et al., 1984). Another facilitatory mechanism which has been relatively well characterized is that mediated through prejunctional angiotensin II receptors. This mechanism has been demonstrated both in vitro (see Zimmerman, 1981), and in vivo (Majewski et al., 1984). A third facilitatory mechanism, which is activated by adrenocorticotropic hormone (ACTH), has been described recently. ACTH and fragments of ACTH (such as ACTH₁₋₂₄) enhanced noradrenaline release in rabbit pulmonary artery and rabbit aorta (Göthert, 1981; Göthert & Hentrich, 1984). The ACTH partial agonist, ACTH₇₋₃₉ significantly inhibited this effect in the rabbit pulmonary artery (Göthert, 1984). There is some evidence that prejunctional ACTH receptors may have physiological significance, since ACTH₁₋₂₄ also enhanced noradrenaline release in vivo in the pithed rabbit with electrically stimulated sympathetic outflow (Szabo et al., 1987).

The facilitatory mechanism mediated through ACTH receptors has not been widely investigated, therefore the first part of this study examined whether or not prejunctional facilitatory ACTH receptors are present in sympathetically innervated tissues from various species.

The second part of the study determined the extent to which activation of inhibitory prejunctional α_2 -adrenoceptors by neuronally-released noradrenaline could buffer the facilitatory effects mediated through ACTH receptors, as well as those mediated through β -adrenoceptors and angiotensin II receptors. The final part of the investigation examined whether these three facilitatory mechanisms enhanced noradrenaline release by increasing intraneuronal adenosine 3':5'-cyclic monophosphate (cyclic AMP) formation. The tissue chosen for this investigation was the rabbit pulmonary artery.

Methods

Preparation of tissues

Rabbit atria, rat atria Rats (180–370 g), or rabbits (2.5–3.5 kg), of either sex were stunned by a blow to the head and then decapitated. The chest was opened and the heart was rapidly removed and placed in warm Krebs-Henseleit solution bubbled with 95% O₂ plus 5% CO₂. The rat spontaneously beating whole atria were dissected free and suspended by a tissue hook between two platinum electrodes in an organ bath which contained Krebs-Henseleit solution. In the case of rabbits, the left atrium was removed and strips of tissue were dissected from the wall of the atrium. The solution

bathing the atria was maintained at 37°C and was continuously bubbled with 95% O₂ plus 5% CO₂.

Pulmonary arteries: rat, guinea-pig, rabbit The animals (rat; 180-370 g, guinea-pig; 200-350 g, rabbit; 2.5-3.5 kg) were stunned by a blow to the head and then decapitated. The chest was opened and the heart and adjoining blood vessels were removed. The pulmonary artery was dissected free in warm Krebs-Henseleit solution bubbled with 95% O₂, 5% CO₂ and then cut in half transversely. Each half was then cut into a spiral strip, attached to a tissue hook and placed in an organ bath as described above. The intial tension applied to the arteries was 1 g.

Radiolabelling with $\lceil ^3H \rceil$ -noradrenaline

Rat atria The atria were incubated with (-)-(7,8) [3 H]-noradrenaline $(2.5\,\mu\text{Ci ml}^{-1};\ 0.2\,\mu\text{M})$ for 20 min. Following the incubation the atria were washed repeatedly with fresh Krebs-Henseleit solution every 30 s for 10 min, then every 2 min for a further 50 min. A priming stimulation consisting of square wave pulses $(20\,\text{V cm}^{-1})$ field gradient, 1 ms duration), at a frequency of 2 Hz for 60 s, was delivered to the atria via the platinum electrodes 45 min after the commencement of the washing procedure. This was to remove loosely bound radioactive compounds from the tissue.

Rat pulmonary artery, guinea-pig pulmonary artery, rabbit pulmonary artery, rabbit atria These tissues were incubated with (-)-(7,8)[3 H]-noradrenaline $(6.7\,\mu\text{Ci ml}^{-1};~0.4\,\mu\text{M})$ for 60 min then washed every 30 s for 10 min, then every 2 min for a further 80 min. A priming stimulation consisting of square wave pulses $(20\,\text{V cm}^{-1})$ field gradient, 1 ms duration, 2 Hz for 60 s), was delivered to the tissue via the platinum electrodes 30 min after the commencement of the washing procedure.

Measurement of radioactive outflow

All tissues Following the washing procedure, the organ bath volume was adjusted to 4 ml. After a 3 min period of contact with the tissue, the 4 ml sample of the solution bathing the tissue was collected in a plastic vial, and a further 4 ml of Krebs-Henseleit solution was added to the organ bath. Eighteen consecutive samples of the solution were taken for measurement of radioactive content. Two test stimulations $(S_1 \text{ and } S_2)$ were delivered to the tissue 30 min apart, at 9 min and at 39 min after the commencement of the sampling procedure. The stimulation parameters were square wave pulses $(20 \text{ V cm}^{-1} \text{ field gradient}, 1 \text{ ms duration})$, at a fre-

quency of 2 Hz for 30s for the rat atria, and 2 Hz for 2 min for all other tissues. When the effects of drugs were assessed they were in contact with the tissue from 15 min before the second stimulation period. In some experiments corticosterone, cocaine and propranolol, or cocaine alone were present throughout the experiment, starting from the beginning of the washing period. Bathing solution (4 ml) was added to 10 ml of Picofluor 30 (Packard Instruments, U.S.A.) and the radioactive content was estimated using a liquid scintillation counter. Corrections for counting efficiency were determined by automatic external and standardization. all measurements expressed as disintegrations per min (d.p.m.).

Calculation of radioactive outflow

Rat atria, rabbit atria and rat pulmonary artery The spontaneous, or resting outflow of radioactivity from the tissue was calculated as the mean value of the radioactive content of the sample taken immediately before the stimulation period and the sample taken 9 min following the stimulation period. The stimulation-induced (S-I) outflow of radioactivity was calculated by adding the radioactive contents of the sample from the period during which stimulation occurred, with that of the sample taken immediately following stimulation (total of 2 samples), after subtracting the mean resting outflow of radioactivity from each sample.

Rabbit pulmonary artery and guinea-pig pulmonary artery Four samples after stimulation were used to calculate the S-I outflow and the resting outflow of radioactivity was calculated as the mean radioactive content of the sample taken immediately before the stimulation period and the sample taken 15 min later.

Statistical analysis of results

All data are expressed as mean \pm s.e.mean. The data were analysed by use of unpaired 2-tailed Student's t tests. Where appropriate, two-way analysis of variance was also performed. Probability levels of less than 0.05 were taken to indicate statistical significance in all cases.

Materials

The following drugs were used: (-)-7,8-[³H]-noradrenaline (13-14 Ci mmol⁻¹; Amersham, U.K.), ACTH₁₋₂₄ (corticotropin₁₋₂₄; Sigma, U.S.A.), (±)-isoprenaline HCl (Sterling Pharmaceuticals, Australia), phentolamine mesylate (Ciba, Australia), (±)-propranolol HCl (ICI, Australia), corticosterone (Sigma, U.S.A.), cocaine HCl (MacFarlan-Smith,

Australia), Val⁵-angiotensin II (Sigma, U.S.A.), 8-bromo-3':5'-cyclic-adenosine monophosphate (Boehringer Mannheim, W. Germany).

The modified Krebs-Henseleit solution had the following composition (mm): NaCl 118, KCl 4.7, CaCl₂ 2.5, NaHCO₃ 25.0, KH₂PO₄ 1.03, MgSO₄ 0.45, D-(+)-glucose 11.1, disodium edetate 0.067 and ascorbic acid 0.14.

Results

Effect of $ACTH_{1-24}$ on the stimulation-induced outflow of radioactivity in rat and rabbit atria

Rat or rabbit atria were incubated with [3 H]-noradrenaline. Two stimulations were delivered (S_1 and S_2) and the absolute S-I outflows of radioactivity for the first stimulation are given in Table 1. ACTH₁₋₂₄ (0.1 μ M) present only during the second stimulation, had no effect on the S-I outflow of radioactivity from either rat atria or rabbit atria (Figure 1). When the cocktail containing corticosterone (40 μ M), cocaine (30 μ M) and propranolol (4 μ M) was present throughout the experiment, ACTH₁₋₂₄ (0.1 μ M) significantly

Table 1 The absolute stimulation-induced (S-I) outflow of radioactive compounds in the first stimulation period (S_1)

Drug	S ₁ (d.p.m.)	n	
Rat atria			
Control	19000 ± 685	6	
Cort, Coc, Pro	11679 ± 1808	13	
Rat pulmonary a	rterv		
Cort, Coc, Pro		9	
Guinea-pig pulme	onary artery		
Cort, Coc, Pro	41083 ± 8653	8	
Rabbit atria			
Control	27743 ± 3937	10	
Cort, Coc, Pro	18461 ± 1650	10	
Rabbit pulmonar	v arterv		
Control	25940 + 1423	86	
Cort, Coc, Pro	10913 ± 1085	8	
Coc	31287 ± 1752	10	

The tissues were preincubated with [3 H]-noradrenaline and the absolute S-I outflow of radioactivity (mean \pm s.e.mean) during the first period of stimulation (S₁) is shown. In some experiments the tissues were exposed to drugs; corticosterone (Cort, 40 μ M), cocaine (Coc, 30 μ M) or propranolol (Pro, 4 μ M) from 75 min prior to S₁. It is difficult to attribute changes in these absolute S-I outflow data to drug effects as the absolute values are dependent on tissue size which varied.

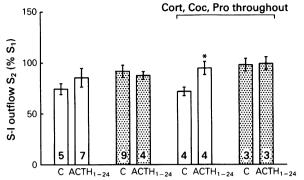


Figure 1 The effect of ACTH₁₋₂₄ (0.1 μ M) on the stimulation-induced (S-I) outflow of radioactivity from rabbit and rat (stippled columns) isolated atria which were incubated with [³H]-noradrenaline. There were two stimulation periods at 2 Hz for 2 min (rabbit) or 30 s (rat). ACTH₁₋₂₄ (0.1 μ M) was present only during the second stimulation period. In some experiments a cocktail containing corticosterone (Cort, 40 μ M), cocaine (Coc, 30 μ M) and propranolol (Pro, 4 μ M) was present during both stimulation periods. The S-I outflow in the second period of stimulation (S₂) is expressed as a percentage of that in the first (S₁). The vertical lines represent s.e.mean. *Represents a significant difference from control (C), P < 0.05, Student's t test. The number of experiments is shown at the base of each column.

enhanced the S-I outflow of radioactivity from rabbit atria but not from rat atria (Figure 1). ACTH $_{1-24}$ (0.1 μ M) had no significant effect on the resting outflow of radioactivity from these tissues (not shown).

In rat atria, phentolamine $(1 \mu M)$ enhanced the S-I outflow of radioactivity (mean $S_2/S_1 = 91.9\%$, s.e.mean = 6.0, n = 9 for control and 232.0%, s.e.mean = 11.1, n = 8 for phentolamine). However, the combination of phentolamine $(1 \mu M)$ and ACTH₁₋₂₄ (0.1 μM) did not enhance the S-I outflow (mean $S_2/S_1 = 207.0\%$, s.e.mean = 22.0, n = 4) any more than phentolamine alone (P > 0.05, Student's t test).

Effect of $ACTH_{1-24}$ on the stimulation-induced outflow of radioactivity in rat and guinea-pig pulmonary artery

Rat or guinea-pig pulmonary arteries were incubated with [3 H]-noradrenaline. Two stimulations were delivered (S_1 and S_2) and the absolute S-I outflows of radioactivity for the first stimulation are given in Table 1. When the cocktail containing corticosterone (40 μ M), cocaine (30 μ M) and propranolol (4 μ M) was present throughout the experiment, ACTH₁₋₂₄ (0.1 μ M) present only during the second stimulation, had no effect (P > 0.05, Student's t test) on the S-I

outflow of radioactivity in rat pulmonary artery (mean $S_2/S_1 = 69.9\%$, s.e.mean = 3.9, n = 5 for control and 67.4%, s.e.mean = 4.6, n = 4 for ACTH₁₋₂₄) or guinea-pig pulmonary artery (mean $S_2/S_1 = 91.3\%$, s.e.mean = 8.2, n = 4 for control and 81.0%, s.e.mean = 1.9, n = 4 for ACTH₁₋₂₄). ACTH₁₋₂₄ (0.1 μ M) had no effect on the resting outflow in either tissue (not shown).

Effect of ACTH₁₋₂₄ on the stimulation-induced outflow of radioactivity in rabbit pulmonary artery

Rabbit pulmonary arteries were incubated with $[^3H]$ -noradrenaline. Two stimulations were delivered to the tissues, and the absolute S-I outflow of radioactivity is given in Table 1. ACTH₁₋₂₄ (0.1 μ M) had no effect on the S-I outflow of radioactivity (Figure 2). When the cocktail of corticosterone (40 μ M), cocaine (30 μ M) and propranolol (4 μ M), or cocaine (30 μ M) alone was present throughout the experiment, ACTH₁₋₂₄ (0.1 μ M) significantly enhanced the S-I outflow of radioactivity (Figure 2).

Another series of experiments was performed in which phentolamine $(1 \mu M)$ was present during the second stimulation period. Phentolamine $(1 \mu M)$ had

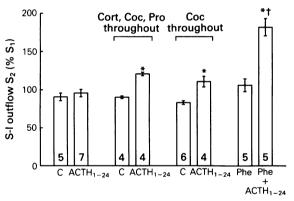


Figure 2 The influence of drugs on the effect of $ACTH_{1-24}$ (0.1 μ M) on the stimulation-induced (S-I) outflow of radioactivity from rabbit pulmonary artery. The arteries were incubated with [3H]-noradrenaline and stimulated twice (2 Hz, 2 min). In some experiments a cocktail of corticosterone (Cort, 40 µm), cocaine (Coc, $30 \,\mu\text{M}$) and propranolol (Pro, $4 \,\mu\text{M}$) or cocaine alone, was present during both stimulation periods. ACTH₁₋₂₄ (0.1 μ M) and phentolamine (Phe, 1 μ M) were present only during the second period of stimulation. The S-I outflow in the second period of stimulation (S₂) is expressed as a percentage of that in the first (S₁). The vertical lines represent s.e.mean. * Represents a significant difference from control (C), P < 0.05, Student's t test. † Represents a significant difference from phentolamine alone P < 0.05, Student's t test. The number of experiments is shown at the base of each column.

no effect on the S-I outflow of radioactivity (Figure 2). In the presence of phentolamine $(1 \mu M)$, ACTH₁₋₂₄ (0.1 μ M) significantly enhanced the S-I outflow of radioactivity (Figure 2). This was not significantly different (P > 0.05, Student's t test) from the facilitatory effect of a lower concentration of ACTH₁₋₂₄ $(0.03 \, \mu \text{M})$ (mean $S_2/S_1 = 195.8\%$, s.e.mean = 13.6, n = 3), but was significantly greater (P < 0.05, Student's t test) than the effect of ACTH₁₋₂₄ $(0.3 \, \mu \text{M})$ (mean $S_2/S_1 = 137.1\%$ s.e.mean = 13.4, n = 3) (all in the presence of phentolamine in S₂). There were no significant effects of the drugs on the resting outflow of radioactivity (not shown).

Effects of angiotensin II and isoprenaline on the stimulation-induced outflow of radioactivity in rabbit pulmonary artery

In rabbit pulmonary artery, angiotensin II (0.01 μ M) significantly enhanced the S-I outflow of radioactivity (Figure 3). When phentolamine (1 μ M) was also present during the second stimulation period, then angiotensin II (0.01 μ M) enhanced the S-I outflow of radioactivity to an even greater extent (Figure 3).

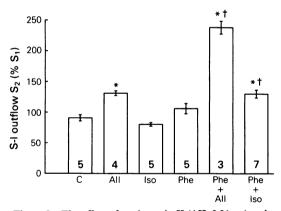


Figure 3 The effect of angiotensin II (AII, 0.01 μ M) and isoprenaline (Iso, $0.1 \mu M$) alone and in the presence of phentolamine (Phe, 1 µM) on the stimulation-induced (S-I) outflow of radioactivity from rabbit pulmonary artery. The arteries were preincubated with [3H]-noradrenaline and stimulated twice (2 Hz, 2 min). The drugs (AII, Iso and Phe) were present only during the second period of stimulation. The S-I outflow in the second period of stimulation (S₂) is expressed as a percentage of that in the first (S₁). The vertical lines represent s.e.mean. * Represents a significant difference from control (C), P < 0.05, Student's t test. † Indicates that the effects of AII and isoprenaline in the presence of phentolamine differed significantly from the simple addition of the individual effects of the drugs P < 0.05, two-way analysis of variance. The number of experiments is shown at the base of each column.

Isoprenaline $(0.1 \,\mu\text{M})$ had no significant effect on the S-I outflow of radioactivity (Figure 3). However, in the presence of phentolamine $(1 \,\mu\text{M})$, isoprenaline $(0.1 \,\mu\text{M})$ significantly enhanced the S-I outflow of radioactivity (Figure 3).

There were no significant effects of the drugs on the resting outflow of radioactivity (not shown).

Effect of isoprenaline, angiotensin II and $ACTH_{1-24}$ on the stimulation-induced outflow of radioactivity in the presence of 8-Br-cyclic AMP

Since the facilitatory effects of isoprenaline and of $ACTH_{1-24}$ on the S-I outflow of radioactivity were clearly demonstrated in the presence of phentolamine the following experiments were carried out with phentolamine (1 μ M) present during the second stimulation period.

The cell permeable cyclic AMP analogue, 8-bromo-3':5' cyclic adenosine monophosphate (8-Brcyclic AMP, 270 or $540 \,\mu\text{M}$) significantly enhanced the S-I outflow of radioactivity (Figure 4). The effects of the two concentrations were not significantly different (P > 0.05, Student's t test) and thus likely to

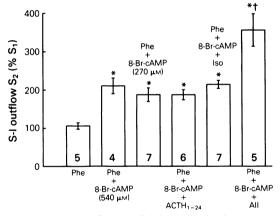


Figure 4 The influence of 8-Br-cyclic AMP on the effects of ACTH₁₋₂₄ (0.1 μ M), isoprenaline (Iso, 0.1 μ M) and angiotensin II (AII, 0.01 µM) on the stimulationinduced (S-I) outflow of radioactivity from rabbit pulmonary artery preincubated with [3H]-noradrenaline. There were two stimulation periods (2 Hz, 2 min). All drugs: phentolamine (Phe, 1 µM), 8-Br-cyclic AMP (8-Br-cAMP, 270 and 540 µm), ACTH₁₋₂₄, All and isoprenaline, were present only during the second stimulation period (S2). The S-I outflow in S2 was expressed as a percentage of that in the first stimulation (S₁). Vertical lines represent s.e.mean. * Indicates a significant phentolamine difference from alone P < 0.05. † Indicates a significant difference from phentolamine combined with 8-Br-cyclic AMP (270 μ M) P < 0.05, Student's t test. The number of experiments is shown at the base of each column.

be maximal (Figure 4). In the presence of 8-Br-cyclic AMP (270 μ M), ACTH₁₋₂₄ (0.1 μ M) did not significantly affect the S-I outflow of radioactivity, nor did isoprenaline (0.1 μ M) (Figure 4). This is in contrast to the facilitatory effects of the drugs in the absence of 8-Br-cyclic AMP (Figure 3). However, angiotensin II (0.01 μ M) significantly enhanced the S-I outflow of radioactivity in the presence of 8-Br-cyclic AMP (270 μ M) (Figure 4) as well as in its absence (Figure 3).

Effects of $ACTH_{1-24}$ in combination with isoprenaline or angiotensin II on the stimulation-induced outflow of radioactivity in the rabbit pulmonary artery

The following experiments were conducted with phentolamine $(1 \mu \text{M})$ present during the second stimulation period. ACTH₁₋₂₄ $(0.1 \mu \text{M})$ significantly enhanced the S-I outflow of radioactivity (Figure 2) and this was the maximally effective concentration (see above). In the presence of ACTH₁₋₂₄ $(0.1 \mu \text{M})$, isoprenaline $(0.1 \mu \text{M})$ did not further enhance the S-I outflow of radioactivity (Figure 5). In contrast, angiotensin II $(0.01 \mu \text{M})$ did significantly enhance the S-I outflow of radioactivity in the presence of ACTH₁₋₂₄ $(0.1 \mu \text{M})$ (Figure 5).

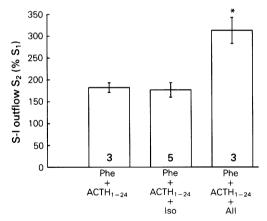


Figure 5 The interaction between ACTH₁₋₂₄ and isoprenaline or angiotensin II on the stimulation-induced (S-I) outflow of radioactivity from rabbit pulmonary artery which had been incubated with [3 H]-noradrenaline. There were two stimulation periods (2 Hz, 2 min). Drugs: phentolamine (Phe, 1 μ M), ACTH₁₋₂₄ (0.1 μ M), isoprenaline (Iso, 0.1 μ M) and angiotensin II (AII, 0.01 μ M) were present during the second stimulation period (S₂). The S-I outflow of radioactivity in S₂ is expressed as a percentage of that in the first stimulation (S₁). Vertical lines represent s.e.mean. *Indicates a significant difference from phentolamine plus ACTH₁₋₂₄, P < 0.05, Student's t test. The number of experiments is shown at the base of each column.

Discussion

The effect of ACTH₁₋₂₄ on noradrenaline release (S-I outflow of radioactivity) was assessed from a variety of sympathetically innervated tissues which had been preincubated with [3H]-noradrenaline. The S-I outflow of radioactivity rather than [3H]noradrenaline outflow was used as an index of noradrenaline release, since this measure includes the metabolites that are formed subsequent to the release of noradrenaline from the nerves as well as unmetabolized noradrenaline (see Langer, 1974b). By itself, ACTH₁₋₂₄ had no effect on noradrenaline release in response to electrical stimulation, from either rabbit pulmonary artery, rabbit atria or rat atria. However, in the presence of a cocktail containing cocaine, corticosterone and propranolol a facilitatory effect of ACTH₁₋₂₄ on noradrenaline release was observed in both rabbit atria and pulmonary artery but not in rat atria, rat pulmonary artery or guinea-pig pulmonary artery. Thus, it appears that facilitation of noradrenaline release by ACTH₁₋₂₄ is restricted to rabbit tissues. It is interesting to note that the initial studies showing facilitatory prejunctional ACTH receptors on sympathetic nerve endings were limited to either rabbit pulmonary artery (Göthert, 1981; 1984), rabbit aorta (Göthert, 1984) or the pithed rabbit with stimulated sympathetic outflow (Szabo et al., 1987), and to our knowledge there are no accounts of these effects being observed in other species. Nevertheless, the presence of prejunctional ACTH receptors in the rabbit tissues suggests that ACTH may have a role to play in the modulation of noradrenaline release, especially when ACTH levels are raised under conditions such as stress.

In the present study, the drug cocktail containing cocaine, corticosterone and propranolol revealed a facilitatory effect of ACTH₁₋₂₄ in both rabbit atria and rabbit pulmonary artery. Further experiments in rabbit pulmonary artery demonstrated that the presence of cocaine alone was sufficient to reveal the facilitatory effect of ACTH₁₋₂₄ on noradrenaline release. We can offer no explanation for this effect c^f cocaine. Earlier studies on prejunctional ACTH receptors (Göthert, 1984) found a facilitatory effect on ACTH₁₋₂₄ on noradrenaline release in rabbit pulmonary artery without using this cocktail of cocaine, corticosterone and propranolol, although the effect was much more pronounced in the presence of this cocktail of drugs.

The sympathetic nerves of rabbit pulmonary artery are endowed with three receptor-mediated facilitatory systems involving prejunctional ACTH receptors (Göthert, 1981; 1984), prejunctional β -adrenoceptors (Johnston & Majewski, 1986) and prejunctional angiotensin II receptors (Endo et al.,

1977). An important limitation to the effects of these facilitatory systems may be the inhibitory prejunctional α_2 -adrenoceptor mechanism which is activated by neuronally released noradrenaline to complete an 'inhibitory feedback loop' (see Langer, 1974a; Starke, 1987). In the present study in the absence of the α adrenoceptor blocking drug phentolamine, angiotensin II, but neither ACTH₁₋₂₄ nor isoprenaline, enhanced noradrenaline significantly release. However, when prejunctional α-adrenoceptors were blocked by phentolamine, the facilitatory effect of angiotensin II was much greater. Furthermore, ACTH₁₋₂₄ and isoprenaline then also enhanced noradrenaline release. These results suggest that there was indeed a buffering action being exerted by the inhibitory prejunctional α-adrenoceptor mechanism leading to the masking of the facilitatory effect of these drugs.

The interaction of phentolamine with β adrenoceptor-mediated facilitation of noradrenaline release has previously been observed in rabbit pulmonary artery (Johnston & Majewski, 1986), as well as in a variety of other sympathetically innervated tissues including rat atria (Majewski & Rand, 1981), mouse atria (Johnston & Majewski, 1986) and rabbit ear artery (Majewski & Rand, 1981). In contrast, Nedergaard (1987) found no facilitatory effect of isoprenaline in the presence of α-adrenoceptor blockade in the rabbit pulmonary artery. The reason for the discrepancy between the results of Nedergaard (1987) in rabbit pulmonary artery with the present study and that of Johnston & Majewski (1986) are unclear. There has been another study on the influence of aadrenoceptor blockade on facilitatory prejunctional systems. In rabbit heart a high concentration of phenoxybenzamine inhibited the facilitatory effect of angiotensin II on noradrenaline release (Starke & Schumann, 1972), but this may have been due to noradrenaline release being near maximally enhanced by phenoxybenzamine alone (Starke & Schumann, 1972).

Despite the interaction between phentolamine and $ACTH_{1-24}$ in rabbit pulmonary artery, in rat atria the presence of phentolamine failed to reveal a facilitatory effect of $ACTH_{1-24}$ on the S-I outflow of radioactivity. This further supports the contention (see above) that rat atria does not possess prejunctional ACTH receptors.

In various cell systems it appears that β -adrenoceptors are linked to adenylate cyclase and that cyclic AMP is involved in the signal transduction process (see Levitski, 1986). Similarly, the effect of ACTH in steroid synthesis in the adrenal cortex is also due to increased adenylate cyclase activity and increased cyclic AMP production (Grahame-Smith *et al.*, 1967). It is possible that facilitation of noradrenaline release through the pre-

junctional β-adrenoceptor and ACTH receptor systems involves cyclic AMP. The participation of cyclic AMP in these mechanisms is possible because cell permeable analogues of cyclic AMP enhance the action-potential induced release of noradrenaline from the sympathetic nerves of tissues (see Johnston et al., 1987). Furthermore, inhibition of cyclic AMP phosphodiesterase which is responsible for the breakdown of cyclic AMP enhanced noradrenaline release in a wide variety of tissues (see Johnston et al., 1987), presumably due to an increase in the intraneuronal levels of endogenous cyclic AMP.

In the present study in rabbit pulmonary artery, 8-Br-cyclic AMP, a cell permeable cyclic AMP analogue (Beebe et al., 1984), enhanced the S-I release of noradrenaline in the presence of phentolamine. 8-Brcyclic AMP was used to elevate total neuronal cyclic AMP levels (8-Br-cyclic AMP + endogenous cyclic AMP), such that changes in endogenous cyclic AMP production would not have an effect on noradrenaline release. In the presence of phentolamine, the concentration of 8-Br-cyclic AMP used (270 µm) was maximal for enhancing noradrenaline release. Under this condition of maximal noradrenaline release through the cyclic AMP mediated pathway, the facilitatory effects of $ACTH_{1-24}$ and of isoprenaline were no longer apparent. This suggests that the facilitatory effects of both ACTH₁₋₂₄ and isoprenaline are due to stimulation of cyclic AMP production.

Similar conclusions to the above have been made in other studies. Phosphodiesterase inhibitors potentiated the facilitatory effect of isoprenaline on noradrenaline release in cat spleen (Cubeddu et al., 1975), guinea-pig myenteric plexus (Alberts et al., 1985), rabbit pulmonary artery and mouse atria (Johnston & Majewski, 1986). Furthermore, saturation of mouse atria with 8-Br-cyclic AMP prevented the facilitatory effect of isoprenaline on noradrenaline release (Johnston et al., 1987). Göthert & Hentrich (1984) also suggested that the effect of ACTH on noradrenaline release was due to activation of adenylate cyclase, since the facilitatory effect of ACTH₁₋₂₄ was potentiated in the presence of a phosphodiesterase inhibitor (Göthert & Hentrich, 1984).

To our knowledge there is no evidence that the effects of angiotensin II are due to activation of adenylate cyclase. Indeed, it has been shown that angiotensin II has either no effect or an inhibitory effect on adenylate cyclase in other cell systems (see Berridge, 1980). Thus in the present study in the presence of a maximal concentration of 8-Br-cyclic AMP for enhancing noradrenaline release (in the presence of phentolamine), angiotensin II still enhanced noradrenaline release suggesting that its effect was indeed independent of the adenylate cyclase-cyclic AMP generating system.

It is possible that prejunctional ACTH receptors and prejunctional β -adrenoceptors are linked to adenylate cyclase and that prejunctional angiotensin II receptors utilize a different pathway. This was further investigated by examining the facilitatory effects of isoprenaline and angiotensin II on the S-I release of noradrenaline in the presence of a maximally effective concentration of ACTH₁₋₂₄ (0.1 μ M). In this case, in the presence of ACTH₁₋₂₄ (0.1 μ M) the facilitatory effect of isoprenaline was no longer apparent, whereas that of angiotensin II was additive with ACTH₁₋₂₄, suggesting that isoprenaline but

not angiotensin II was enhancing S-I release of noradrenaline by a similar pathway to ACTH₁₋₂₄. This is in accord with our earlier findings with 8-Br-cyclic AMP. It is therefore likely that the coupling of prejunctional modulatory systems to different second messenger pathways may help explain interactions between the various prejunctional receptors.

The work in this paper was supported by grants from the National Health and Medical Research Council and the National Heart Foundation of Australia. H.M. is a Wellcome Australian Senior Research Fellow.

References

- ALBERTS, P., ÖGREN, V.R. & SELLSTRÖM, Å.I. (1985). Role of adenosine 3',5'-cyclic monophosphate in adrenoceptor mediated control of [3H]-noradrenaline secretion in guinea-pig ileum myenteric nerve terminals. Naunyn-Schmiedebergs Arch. Pharmacol., 330, 114-120.
- BEEBE, S.J., HOLLOWAY, R., RANNELS, S.R. & CORBIN, J.D. (1984). Two classes of cAMP analogues which are selective for the two different cAMP-binding sites of type II protein kinase demonstrate synergism when added together to intact adipocytes. J. Biol. Chem., 259, 3539–3547.
- BERRIDGE, M.J. (1980). Receptors and calcium signalling. Trends Pharmacol. Sci., 1 (15), 419-424.
- CUBEDDU, X., BARNES, E. & WEINER, N. (1975). Release of noradrenaline and dopamine-β-hydroxylase by nerve stimulation. IV. An evaluation of a role for cyclic adenosine monophosphate. J. Pharmacol. Exp. Ther., 193 (1), 105-127.
- ENDO, T., STARKE, K., BABGERTER, A. & TAUBE, H.D. (1977). Presynaptic receptor systems in the pulmonary artery. Naunyn-Schmiedebergs Arch. Pharmacol., 296, 229-247.
- GÖTHERT, M. (1981). ACTH₁₋₂₄ increases stimulationevoked noradrenaline release from sympathetic nerves by acting on presynaptic ACTH receptors. *Eur. J. Pharmacol.*, 76, 295-296.
- GÖTHERT, M. (1984). Facilitatory effects of adrenocorticotropic hormone and releated peptides on Ca²⁺dependent noradrenaline release from sympathetic nerves. *Neuroscience*, 11, 1001-1009.
- GÖTHERT, M. & HENTRICH, F. (1984). Role of cAMP for regulation of impulse-evoked noradrenaline release from the rabbit pulmonary artery and its possible relationship to presynaptic ACTH receptors. Naunyn-Schmiedebergs Arch. Pharmacol., 328, 127-134.
- GRAHAME-SMITH, D.G., BUTCHER, R.W., NEY, R.L. & SUTHERLAND, E.W. (1967). Adenosine 3',5'-monophosphate as the intracellular mediator of the action of adrenocorticotropic hormone on the adrenal cortex. J. Biol. Chem., 242 (23), 5535-5541.
- JOHNSTON, H. & MAJEWSKI, H. (1986). Prejunctional β -adrenoceptors in rabbit pulmonary artery and mouse

- atria: effect of α -adrenoceptor blockade and phosphodiesterase inhibition. Br. J. Pharmacol., 87, 553-562.
- JOHNSTON, H., MAJEWSKI, H. & MUSGRAVE, I.F. (1987). Involvement of cyclic nucleotides in prejunctional modulation of noradrenaline release in mouse atria. Br. J. Pharmacol., 91, 773-781.
- LANGER, S.Z. (1974a). Presynaptic regulation of catecholamine release. Biochem. Pharmacol., 23, 1793-1800.
- LANGER, S.Z. (1974b). Selective metabolic pathways for noradrenaline in the peripheral and in the central nervous system. Med. Biol., 52, 372-383.
- LANGER, S.Z. (1981). Presynaptic regulation of the release of catecholamines. *Pharmacol. Rev.*, 32, 337-362.
- LEVITSKI, A. (1986). β-Adrenergic receptors and their mode of coupling to adenylate cyclase. *Physiol. Rev.*, 66, 819–854.
- MAJEWSKI, H. (1983). Modulation of noradrenaline release through activation of presynaptic β -adrenoceptors. J. Auton. Pharmacol., 3, 47–60, corrigenda p. 155.
- MAJEWSKI, H., HEDLER, L., SCHURR, C. & STARKE, K. (1984). Modulation of noradrenaline release in the pithed rabbit: A role for angiotensin II. J. Cardiovasc. Pharmacol., 6, 888-896.
- MAJEWSKI, H. & RAND, M.J. (1981). An interaction between prejunctional α -adrenoceptors and prejunctional β -adrenoceptors. Eur. J. Pharmacol., **69**, 493–498.
- NEDERGAARD, O.A. (1987). Effect of isoprenaline on noradrenaline release from sympathetic neurones in rabbit isolated pulmonary artery. Naunyn-Schmiedebergs Arch. Pharmacol., 336, 176-182.
- RAND, M.J., McCULLOCH, M.W. & STORY, D.F. (1980). Catecholamine receptors on nerve terminals. In Adrenergic Activators and Inhibitors. Part I. Handbook of Experimental Pharmacology, Vol. 54, ed. Szekeres, L. pp. 223-266. Berlin, Heidelberg: Springer.
- RAND, M.J., MAJEWSKI, H., WONG-DUSTING, H., STORY, D.F., LOIACONO, R.E. & ZIOGAS, J. (1987). Modulation of neuroeffector transmission. J. Cardiovasc. Pharmacol., 10, Suppl. 10, 533-544.
- SCHMIDT, H.H.H.W., SCHURR, C., HEDLER, L. & MAJEWSKI, H. (1984). Local modulation of noradrenaline release *in vivo*: presynaptic β₂-adrenoceptors and

- endogenous adrenaline. J. Cardiovasc. Pharmacol., 6, 641-649.
- STARKE, K. (1977). Regulation of noradrenaline release by presynaptic receptor systems. Rev. Physiol. Biochem. Pharmacol., 77, 1-124.
- STARKE, K. (1981). Presynaptic receptors. Ann. Rev. Pharmacol. Toxicol., 21, 7-30.
- STARKE, K. (1987). Presynaptic α-autoreceptors. Rev. Physiol. Pharmacol., 107, 74-146.
- STARKE, K., ENDO, T., TAUBE, H.D. & BOROWSKI, E. (1975). Presynaptic receptor systems on noradrenergic nerves. In *Chemical Tools in Catecholamine Research*, Vol. 2, ed. Almgren, O., Carlsson, A. & Engel, J. pp. 193–200. Amsterdam, Oxford: North Holland.
- STARKE, K. & SCHUMANN, H.J. (1972). Interactions of angiotensin, phenoxybenzamine and propranolol on noradrenaline release during sympathetic nerve stimulation. *Eur. J. Pharmacol.*, 18, 27-30.
- SZABO, B., HEDLER, L., LICHTWALD, K. & STARKE, K. (1987). ACTH increases noradrenaline release in pithed rabbits with electrically stimulated sympathetic outflow. Eur. J. Pharmacol., 136, 391-399.
- WESTFALL, J.E.S. (1977). Local regulation of adrenergic neurotransmission. *Physiol. Rev.*, **57**, 659-728.
- ZIMMERMAN, B.G. (1981). Adrenergic facilitation by angiotensin II: does it serve a physiological function Clin. Sci., 60, 343-348.

(Received April 26, 1988 Revised June 6, 1988 Accepted June 9, 1988)